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1 INTRODUCTION 

A typical site investigation program for a linear in-
frastructure project could include multiple types of 
site characterization techniques including geophys-
ics, in-situ testing, borehole drilling and laboratory 
testing.  Currently these data are often used in isola-
tion from each other.  For example, geophysical sur-
veys could be used to assess site stratigraphy but not 
used to assess material parameters.  When data are 
combined, they can have different resolutions.  A 
profile of boreholes and in-situ tests can be overlain 
on geophysics data to help interpret stratigraphic 
boundaries from ‘blurry’ geophysics data.  In-situ 
tests can be performed at different locations to bore-
holes and compared with the laboratory test data ob-
tained from soil samples to develop material pa-
rameters.  The soil between the in-situ tests and the 
borehole locations is assumed to have uniform prop-
erties.  

Probabilistic numerical methods can be used to 
combine many of these different data sets to extract 
additional information from data that are routinely 
collected.  The numerical methods have the potential 
to increase resolution of stratigraphic assessments 
using geophysics combined with other data, convert 
geophysics data to material properties, improve the 
resolution of in-situ tests combined with high quality 
laboratory measurements and to interpolate stratig-

raphy/material properties between test locations 
(e.g., Foti 2013).

Bayesian updating is a probabilistic numerical 
method that can be used to combine data.  The ad-
vantage of Bayesian updating is that small data sets 
can be used. In this paper we demonstrate how 
Bayesian updating works by combining data from 
in-situ shear wave velocity measurements and labor-
atory tests with depth at a single location (one di-
mension).  The theory can be extended to two and 
three dimensions.  The example we present 
combines preconsolidation pressures obtained from 
constant rate of strain (CRS) consolidation tests with 
shear wave velocity data obtained from a seismic 
dilatometer test. 

2 BAYESIAN UPDATING 

Bayesian updating is a stochastic method that is well 
suited to geotechnical processes, particularly when 
limited information is available (e.g., Kelly and 
Huang 2015). Bayes’ formula can be written as 
follows: 

| |P P Py y (1) 

where P  is the prior probability distribution of 
the material parameters, |P y  is the probability of 
measurements y conditional on the material 
parameters  and |P y  is the posterior 
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distribution of the material parameters updated by 
measurements. 

 
The measurements y  represent the geophysics 

data and can be written as: 

iy f  (2)  

where  is the mean “error” or difference 
between measurement and model function (or 
calculation) f .   

If the measured error is assumed to be normally 
distributed, the likelihood function of measurement 

iy  can be written as: 

( | ) i
i

y f
P y  (3)  

where  is the standard deviation of the 
measurement errors, and  is the probability density 
function of the standard normal distribution. 

 
The Markov Chain Monte Carlo sampling 

method (MCMC) has been used to sample the 
posterior distribution.  This method involves 
stepping through a Markov Chain where, at each 
step, a test realization for  is proposed according 
the proposed distribution, and is then either accepted 
or rejected using a random decision rule based on 
the realization’s predicted data misfit and the misfit 
of the previously accepted model.  After a certain 
“burn-in” period, required for the procedure to 
stabilize and become independent of the initial 
starting realization, accepted samples drawn at 
regular intervals along the Markov Chain will 
represent independent realizations of the posterior 
distribution and will occur at a frequency 
corresponding to their posterior probability of 
occurrence.  The basic idea goes back to Metropolis 
et al. (1953)).  

 0 

3 EMPIRICAL RELATIONSHIP BETWEEN 
PRECONSOLIDATION PRESSURES AND 
SHEAR WAVE VELOCITY 
 

Atkinson (2007)) proposed Eq. (4) relating small 
strain shear stiffness to yield stress ratio.  In this 
Equation, 0G  is the small strain stiffness, ap  is a 
normalising pressure taken to be 1kPa, A , n  and m  
are constants, p  is the effective mean pressure and 

0R  is the yield stress ratio.  

0
0

n
m

a a

G pA R
p p

 (4)  

The shear wave velocity should therefore be 
related to the yield stress ratio because 0G  and shear 

wave velocity are related parameters.  Eq. (5) is 
written in terms of effective vertical stress and OCR  
as an analogy to Equation 5.   

0
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mv
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p p

 (5)  

A relationship between preconsolidation pressure 
and shear wave velocity was obtained by adopting 
the values n  = 0.9, m  = 0.35 and A  = 170 estimated 
from Atkinson (2007))  and rewriting OCR  in terms 
of preconsolidation pressure.   

Eq. (5) is the model function and we consider that 
its accuracy is uncertain.  The model function is used 
to convert the geophysical data into a form that can 
be compared with more accurate laboratory test data. 

Preconsolidation pressures assessed from 
constant rate of compression tests and the ones 
interpreted from a seismic dilatometer test are 
compared in Fig. 1.  The laboratory test data are 
considered the prior set of material parameters and 
the seismic dilatometer data are the measurements. 
 

 
Figure. 1 Comparison between preconsolidation pressures 
assessed from constant rate of compression tests and 
interpreted from a seismic dilatometer test.  

4 PRIOR INTERPRETATION OF 
PRECONSOLIDATION PRESSURES 
 

The prior distribution is obtained from laboratory 
test data.  A log-normal distribution has been 
assumed for the prior values. 
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A prior distribution of the measurements can be 
obtained by obtaining a linear trend through the data 
with depth and then assessing the standard deviation 
of the data from the trend.  This is equivalent to 
assuming the preconsolidation pressure increases 
linearly with depth as  

y az b  (6)  

where z  is reduced level, a  and b  are constants. 
The laboratory test data is fitted to Eq. (6) by the 
least square method, and 6.38kPaa  and 

39.90kPab . The standard deviation from the 
trendline is 6.39kPa and is assumed to be constant 
with depth. 
 

 
Figure. 2 Trend analysis of preconsolidation pressures assessed 
from constant rate of compression tests.  
 

A prior distribution can also be obtained by 
kriging through the data set.  Kriging provides a best 
estimate of a random field between known data.  The 
basic idea is to estimate ( )X z  at any point using a 
weighted linear combination of the values of X  at 
each observation point.  In kriging, high weights are 
given to the points that are closer to the unknown 
points. Interested readers are referred to Fenton and 
Griffiths (2008)).  The kriged preconsolidation 
pressures assessed from constant rate of compression 
tests are shown in Fig. 3.  In the example presented 
in this paper the scale of fluctuation is only used in 
the vertical direction but it can, in principle, be used 
to model 2D and 3D spatial variations. 

 

 
Figure. 3 Kriging interpolation of preconsolidation pressures 
assessed from constant rate of compression tests.  

5 PRECONSOLIDATION PRESSURE UPDATED 
BY SHEAR WAVE VELOCITY 

The mean and standard deviation of the error be-
tween the seismic dilatometer data and the model 
function are not known in advance.  Shear wave ve-
locities measured from seismic dilatometer tests are 
likely to be quite accurate, as is their conversion to 
small strain shear stiffnesses.  However, the accura-
cy of the model function, Eq. (5), is quite uncertain.  
If we assume that there is no bias in the model func-
tion then the mean of the error can be set to zero.  If 
we assume that the model function is highly uncer-
tain then we can assign a large standard deviation to 
the error.  In this case, the prior information will 
dominate the posterior solution, and in the extreme 
they will be equal.  This is the same as assuming that 
the preconsolidation pressures measured in the la-
boratory apply everywhere in the domain.  If we as-
sume that the error has a small standard deviation 
then the solution will be more heavily influenced by 
the seismic dilatometer data and model function.   

For the purpose of this example we have assumed 
that the standard deviation of the error is relatively 
small to highlight how the posterior is influenced by 
the prior and likelihood functions. 

The posterior mean preconsolidation pressure is 
compared with the linear prior and model function 
from the seismic dilatometer in Fig. 4.  The posterior 
prediction has updated the seismic dilatometer data 
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such that its trend and magnitude more closely ap-
proximates the laboratory values. 

A similar comparison with the kriged prior is 
shown in Fig. 5.  Kriging incorporating a scale of 
fluctuation provides a set of prior values that are 
conditioned on the laboratory data but vary between 
data points according to the scale of fluctuation.  The 
posterior prediction is a better fit to the laboratory 
test data, possibly due to the standard deviation of 
the prior kriged data being smaller than that of the 
prior linear data.  Use of a scale of fluctuation with 
the kriged prior also provides greater accuracy when 
interpolating between data points with depth com-
pared with the linear prior. 

6 DISCUSSION 

The previous section demonstrated some of the prin-
ciples adopted when combining data.  This method 
of analysis can be extended into two dimensions 
where a geophysical data set could be conditioned 
on laboratory and in-situ test data obtained at differ-
ent spatial locations, both horizontally and with 
depth.  The combined data set creates a 2D geotech-
nical model, where material parameters can be as-
signed to geophysical grid points.  This model would 
be an enhancement of conventional models, where 
material parameters are assigned uniformly to a par-
ticular stratigraphic layer. 

In principle, this model could then be transformed 
into a finite element mesh.  Further, mean and stand-
ard deviation of the parameter values are also asso-
ciated with the grid points, which allows creation of 
2D probabilistic models.  Creation of such models is 
a fundamental precursor for the routine use of prob-
abilistic analysis in design practice. 

However, a number of technical challenges re-
main to be overcome.  One significant challenge is 
to quantify model error.  At the moment it is difficult 
to quantify the magnitude of model error.  Therefore 
the analyst can choose how much error to adopt in 
an analysis to effectively tune the model towards 
uniform material properties based on laboratory test 
data at one extreme or geophysics data at the other 
extreme.  Selection of model error is therefore based 
on engineering judgment and the skill of the analyst. 

A second challenge is to incorporate Bayesian 
updating of stratigraphic boundaries into the process 
(e.g., Houlsby and Houlsby 2013) before updating 
the material properties.  In the examples presented in  
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Figure. 4 Posterior mean preconsolidation pressures using trend 
analysis of constant rate of compression tests as prior distribu-
tion. 
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Figure. 5 Posterior mean preconsolidation pressures using 
kriging interpolation of constant rate of compression tests as 
prior distribution. 
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Section 5, the laboratory and dilatometer data sets 
were obtained from different physical locations and 
there is a difference in the depth to the base of the 
soft clay.  The level at the base of the soft clay is ap-
proximately RL-9.5m at the location of the dilatome-
ter and about RL-12m at the location of the laborato-
ry test data.  The Bayesian process, as presented 
here, updates both data sets irrespective of their stra-
tigraphy. 

7 CONCLUSIONS 

This paper combines two different sets of geotech-
nical test data, namely results from laboratory con-
stant rate compression tests and field seismic dila-
tometer tests.  Empirical relationships between the 
preconsolidation pressure and shear wave velocity 
are firstly derived from the two sets of data.  Unlike 
the traditional direct transformation, where the un-
certainty associated with the transformation is ig-
nored, the Bayesian updating approach is used to 
form a rigorous framework for combining the two 
sets of data.  It is shown that the uncertainties of pre-
consolidation pressure can be significantly reduced 
by incorporating shear wave velocity measurements. 

Further work is required to extend the process in-
to two dimensions, incorporate stratigraphic updat-
ing and to investigate the magnitude of model error. 
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